Force & Fields – Guided Notes

Cou	llomb's Law in words:
L	
Cou	llomb's Law Equation:
F =	
q ₁ a	nd q ₂ =
d =	
k =	
	v is Coulomb's Law similar to Newton's Universal Law of Gravitation?
Pro	ton & Electron Simple Example Problem:
	A proton and an electron are separated by a distance of 5.3 x 10 ⁻¹¹ m. What is the force between the 2 particles?

Charges in a Line Problem:

Solution:							

Triangle Charge Problem:

Q. What is the net force on charge 1?

Solution:

I		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
I		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
I		
1		
1		
1		
1		
1		
1		
1		
1		

Draw Below the Example of a "Temperature Field":

Draw the electric field around a positive charge:

Draw the electric field around a negative charge:

The above are electric field VECTORS. What would they look like if instead we drew electric field lines?

Four Rules for Electric Field Lines:

1. Always come out of ______ and into _____ .

2. The closer the lines, the ______ the field.

3. Electric field lines never ______.

4. Electric field lines should be drawn perpendicular to a surface.

So what is an electric field?

•	
-	
•	
•	

The Equation for Electric Field (fill in the missing parts below):

Electric field is the force that a +1 C test charge feels. So sub in 1 to the force equation.

This is the electric field around a charge q.

Electric field is the force a +1C test charge feels, so in other words it is the force felt per unit charge. (The force per Coulomb). That gives us another equation (definition) for electric field:

$$\mathbf{E} = \mathbf{F}$$

Multiple-Charges Electric Field Problem:

Q. What is the overall electric field at point P?

Solution:

