Newton's 1st Law – Guided Notes

A force is a	Forces are measured in	_ •
Two types of forces:		
1		
2		
Examples of long range forces:		
1		
2		
Examples of Forces:		

Demo

What happened when the index card was flicked?

Balanced Forces

A shopping cart stops after being pushed once because the forces become unbalanced. This happens because of the force of ______.

Newton's 1st Law says:

FBD of Coin on the Index Card:

FBD of Coin Without the Index Card:

A net force is ______

Net force is otherwise known as ______ or ______.

_ •

Tug of War Diagram:

Forces Box Diagram:

The net force in this situation will be ______ N to the _____ (up/down/right/left).

FBD of Table:

FBD of a Brick/Ball on a Slope:

Mass vs Weight – Guided Notes

Weight is measured in _____.

Mass is measured in ______.

Ways to label the force of gravity:

If you went to the moon, your ______ would change, but your ______ would stay the same.

Equation for the force of gravity:

m = _____

g = _____ Fg = _____

Example:

Balanced Forces – Guided Notes

If the forces on an object are balanced (meaning there is no acceleration -- a constant velocity), we can write a balanced forces equation.

Tug of War Equation

Car Force Diagram

Pulled Cart Force Diagram

Car Equations

Vertical:

Horizontal:

Cart Equations

X-Component of Pulling Equation:

Y-Component of Pulling Equation:

X-Direction Equation:

Y-Direction Equation:

Newton's 2nd Law – Guided Notes

Newton's 2nd Law says:

Г

Or as an eq	juation:			
	OR			
F =		-		
M =				
a =				

If the forces are unbalanced, there is a net force and so the object will accelerate.

Car Example:

 $F_{net} = ma$

OR

 $\Sigma F = ma$

Replace $F_{\mbox{\scriptsize net}}$ with the forces acting:

Whatever direction the net force has, is the same direction the acceleration has.

Directions for Physics:

Elevator moving at constant velocity:

Force Diagram

Force Comparison Equation

Elevator accelerating up (JOLT UP):

Force Diagram

Force Comparison Equation

Elevator accelerating down (JOLT DOWN):

Force Diagram

Elevator accelerating up (JOLT UP) - Full Equation and Calculation

m = ______ g = _____

F_N = _____

Newton's 3rd Law – Guided Notes

Newton's 3rd Law says:

OR

If you push on a wall with a force of 50 N, then ______

When you jumped off your chair, the Easrth applied an ______ but _____ but

•

Why didn't the Earth move much?

Fly & Car

Picture:

Equation:

Inclined Planes – Guided Notes

When on an inclined plane, objects roll/slide down the slope because of the force of ______.

To solve such problems we can rotate the axis. The final diagram will look like this:

We can break the force of gravity into a component down the slope, and a component into the slope, which gives the following equations:

Final Free Body Force Diagram:

Balanced Forces Equations:

X-Direction Equation

Y-Direction Equation

X-Direction Acceleration Equation (for situations where the object on the plane is accelerating):

Friction – Guided Notes

What is friction?

If you looked at a smooth surface under a microscope, what would you see?

Is it easier to get a shopping cart moving, or keep it moving? Why?

Two types of friction:

1. _____ Symbol: _____

2. _____ Symbol: _____

Friction Graph

Applied Force (N)

Frictional Force (N)

Coefficient of Friction Equation

The coefficient of friction is:

Slope Diagrams

Flat Surface Diagram:

Equation for Normal Force:

Slope Diagram:

What happened when the phone books were interleaved, and why?